

ROBOTICS **Product specification** IRB 1510

Trace back information: Workspace 24D version a4 Checked in 2024-12-09 Skribenta version 5.6.018

Product specification

IRB 1510

OmniCore

Document ID: 3HAC087871-001 Revision: B

© Copyright 2023-2024 ABB. All rights reserved. Specifications subject to change without notice.

The information in this manual is subject to change without notice and should not be construed as a commitment by ABB. ABB assumes no responsibility for any errors that may appear in this manual.

Except as may be expressly stated anywhere in this manual, nothing herein shall be construed as any kind of guarantee or warranty by ABB for losses, damage to persons or property, fitness for a specific purpose or the like.

In no event shall ABB be liable for incidental or consequential damages arising from use of this manual and products described herein.

This manual and parts thereof must not be reproduced or copied without ABB's written permission.

Keep for future reference.

Additional copies of this manual may be obtained from ABB.

Original instructions.

© Copyright 2023-2024 ABB. All rights reserved. Specifications subject to change without notice.

Table of contents

Inc	dex		55
3	Acce	essories	53
	2.6	Warranty	52
	2.5	User documentation	51
		2.4.1 Process	49 50
	2.4	2.4.1 Process	49 49
	2.3 2.4	Floor cables Process	48 49
	2.2 2.3	Manipulator	40 48
	2.1 2.2	Introduction to variants and options	45 46
2		cification of variants and options	45
	1.9	Maintenance and troubleshooting	43
	1.8	Customer connections	42
	10	1.7.4 Robot stopping distances and times	41
		1.7.3 Velocity	40
		1.7.2 Performance according to ISO 9283	39
		1.7.1 Introduction	37
	1.7	Robot motion	37
	1.6	Mounting of equipment	33
		1.5.4 Wrist torque	32
		movement	30
		1.5.3 Maximum load and moment of inertia for full and limited axis (center line down)	_
		1.5.2 Load diagrams	28
		1.5.1 Introduction	27
	1.5	Robot load and diagrams	27
		1.4.2 Fine calibration	26
		1.4.1 Calibration methods	24
	1.4	Calibration and reference	24
		1.3.3 Mounting the manipulator	21
		1.3.2 Technical data	17
	110	1.3.1 Introduction	16
	1.3	Installation	16
	1.2	Applicable standards	14
		1.1.2 Different robot variants	11
	1.1	1.1.1 Introduction	9
<u> </u>	1.1	Structure	9
1	Desc	ription	9
	Over	view of this specification	7

This page is intentionally left blank

Overview of this specification

About this product specification

It describes the performance of the manipulator or a complete family of manipulators in terms of:

- · The structure and dimensional prints
- · The fulfilment of standards, safety and operating requirements
- The load diagrams, mounting of extra equipment, the motion and the robot reach
- · The specification of variant and options available

Usage

Product specifications are used to find data and performance about the product, for example to decide which product to buy. How to handle the product is described in the product manual.

Users

It is intended for:

- Product managers and product personnel
- Sales and marketing personnel
- Order and customer service personnel

References

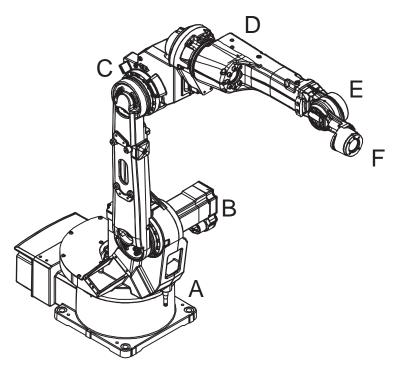
Reference	Document ID
Product specification - Controller IRC5 IRC5 with main computer DSQC1000.	3HAC047400-001
<i>Product specification - Controller software IRC5</i> IRC5 with main computer DSQC1000 and RobotWare 6.	3HAC050945-001
Product manual - IRB 1510	3HAC087870-001
Product specification - Robot user documentation, IRC5 with RobotWare 6	3HAC052355-001

Revisions

Revision	Description	
Α	First edition.	
В	 Published in release 24D. The following updates are done in this revision: Updated the section <i>Technical data on page 17</i>. 	

This page is intentionally left blank

1.1 Structure


1.1.1 Introduction

Robot family	
	ABB's IRB 1510 robot is a dedicated arc welding robot available in one version. It has a compact process upper arm designed for integrated dressing packages for arc welding. The IRB 1510ID-4/1.5 is a part of the ArcPack Lean concept.
Operating system	
	The robot is equipped with the IRC5 controller and robot control software,
	RobotWare. RobotWare supports every aspect of the robot system, such as motion
	control, development and execution of application programs, communication etc.
	see Product specification - Controller IRC5.
Software product	range
	We have added a range of software products - all falling under the umbrella
	designation of Active Safety - to protect not only personnel in the unlikely event
	of an accident, but also robot tools, peripheral equipment and the robot itself.
Safety	
	Safety standards valid for complete robot, manipulator and controller.
Additional functio	nality
	For additional functionality, the robot can be equipped with optional software for
	application support - for example gluing and welding, communication features -
	network communication - and advanced functions such as multitasking, sensor
	control etc. For a complete description on optional software, see Product
	specification - Controller software IRC5.

9

1.1.1 Introduction *Continued*

Manipulator axes

xx1100000294

Pos	Description	Pos	Description
Α	Axis 1	В	Axis 2
С	Axis 3	D	Axis 4
E	Axis 5	F	Axis 6

1.1.2 Different robot variants

1.1.2 Different robot variants

General

The IRB 1510 is available in one variant and can only be mounted on the floor or inverted (no tilting allowed around X-axis or Y-axis). See *Robot motion on page 37* for limitations.

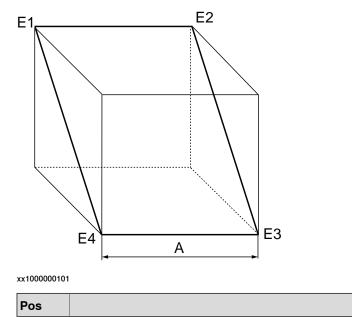
Robot	Handling capacity (kg)	Reach (m)
IRB 1510ID	4 kg	1.5 m

Manipulator weight

Robot	Weight
IRB 1510ID-4/1.5	170 kg

Other technical data

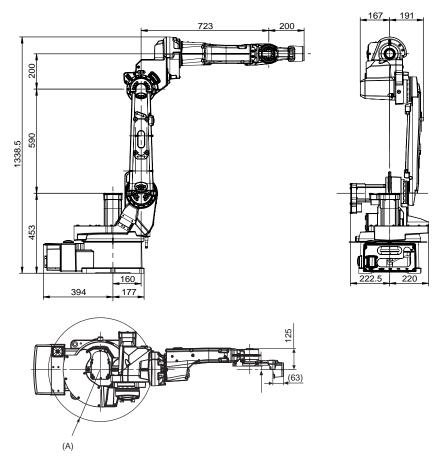
Data	Description	Note
Airborne noise level	The sound pressure level outside the working space	< 70 dB (A) Leq (acc. to Ma- chinery directive 2006/42/EG)


Power consumption

Type of movement	IRB 1510ID-4/1.5
ISO cube Max. velocity	0.75 kW
Robot in calibration position	IRB 1510ID-4/1.5
Brakes engaged	0.206 kW
Brakes disengaged	0.233 kW

1.1.2 Different robot variants *Continued*

Α


400 mm

Path E1-E2-E3-E4 in the ISO Cube, max.load.

1.1.2 Different robot variants Continued

Dimensions IRB 1510ID-4/1.5

xx1100000295

Pos	Description
А	Minimum turning radius R=307 mm

1.2 Applicable standards

1.2 Applicable standards

Note

The listed standards are valid at the time of the release of this document. Phased out or replaced standards are removed from the list when needed.

General

The product is designed in accordance with ISO 10218-1:2011, Robots for industrial environments - Safety requirements -Part 1 Robots, and applicable parts in the normative references, as referred to from ISO 10218-1:2011. In case of deviations from ISO 10218-1:2011, these are listed in the declaration of incorporation which is part of the product delivery.

Normative standards as referred to from ISO 10218-1

Standard	Description
ISO 9283:1998	Manipulating industrial robots - Performance criteria and related test methods
ISO 10218-2	Robots and robotic devices - Safety requirements for industrial robots - Part 2: Robot systems and integration
ISO 12100	Safety of machinery - General principles for design - Risk as- sessment and risk reduction
ISO 13849-1:2006	Safety of machinery - Safety related parts of control systems - Part 1: General principles for design
ISO 13850	Safety of machinery - Emergency stop - Principles for design
IEC 60204-1	Safety of machinery - Electrical equipment of machines - Part 1: General requirements

Deviations from ISO 10218-1:2011 for IRC5 with MultiMove

A deviation exists towards ISO 10218-1:2011, paragraph *5.9 Control of simultaneous motion*, for the option MultiMove. See the application manual for MultiMove.

Other standards used in design

Standard	Description
ISO 9787:2013	Robots and robotic devices Coordinate systems and motion nomenclatures
IEC 61000-6-2	Electromagnetic compatibility (EMC) – Part 6-2: Generic standards – Immunity standard for industrial environments
IEC 61000-6-4	Electromagnetic compatibility (EMC) – Part 6-4: Generic standards – Emission standard for industrial environments
ISO 13732-1:2006	Ergonomics of the thermal environment - Part 1
IEC 60974-1:2012 ⁱ	Arc welding equipment - Part 1: Welding power sources
IEC 60974-10:2014 ⁱ	Arc welding equipment - Part 10: EMC requirements
ISO 14644-1:2015 ⁱⁱ	Classification of air cleanliness

1.2 Applicable standards *Continued*

Standard	Description	
IEC 60529:1989 + A2:2013	Degrees of protection provided by enclosures (IP code)	
1		

i Only valid for arc welding robots. Replaces IEC 61000-6-4 for arc welding robots.

ii Only robots with protection Clean Room.

1.3.1 Introduction

1.3 Installation

1.3.1 Introduction

General		
	IRB 1510ID-4/1.5 can only be mounted on the floor or inverted (no tilting allo around X-axis or Y-axis). An end effector with max. weight of 4 kg including pay can be mounted on the tool flange. See <i>Robot load and diagrams on page</i> 2	
	Extra equipment can be mounted on the upper arm. See <i>Mounting of equipment</i> on page 33.	
Extra loads		
	Extra load, which is included in the load diagrams, can be mounted on the upper arm. See <i>Robot load and diagrams on page 27</i> .	
Working range		
	Electronic Position Switches can be used on all axes for position indication of the manipulator.	
Explosive enviror	nments	
	The robot must not be located or operated in an explosive environment.	

1.3.2 Technical data

1.3.2 Technical data

Weight, robot

The table shows the weight of the robot.

Robot model	Weight
IRB 1510	170 kg

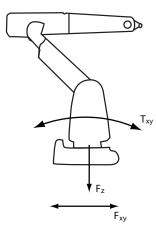
The weight does not include tools and other equipment fitted on the robot.

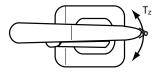
Mounting positions

The table shows valid mounting options for the manipulator.

Mounting option	Installation angle	Note
Floor mounted	0° i	
Suspended	180°	
A tilt of up to 15° does not affect the payload or reach, but it can have a pegative impact on		

A tilt of up to 15° does not affect the payload or reach, but it can have a negative impact on performance and lifetime. The actual value must be set in the system parameters.


The actual mounting angle must always be configured in the system parameters, otherwise the performance and lifetime is affected. See the product manual for details.


1.3.2 Technical data *Continued*

Loads on foundation, robot

The illustration shows the directions of the robots stress forces.

The directions are valid for all floor mounted, suspended and inverted robots.

xx1100000521

F _{xy}	Force in any direction in the XY plane
Fz	Force in the Z plane
T _{xy}	Bending torque in any direction in the XY plane
Tz	Bending torque in the Z plane

The table shows the various forces and torques working on the robot during different kinds of operation.

These forces and torques are extreme values that are rarely encountered during operation. The values also never reach their maximum at the same time!

The robot installation is restricted to the mounting options given in following load table(s).

Floor mounted

Force	Endurance load (in operation)	Max. load (emergency stop)
Force xy	± 1900 N	± 4300 N
Force z	1850 ±900 N	1850 ±2350 N
Torque xy	± 1550 Nm	± 3900 Nm
Torque z	± 390 Nm	± 1200 Nm

Continues on next page

1.3.2 Technical data Continued

Suspended

Force	Endurance load (in operation)	Max. load (emergency stop)
Force xy	± 1900 N	± 4250 N
Force z	- 1850 ±750 N	-1850 ±2350 N
Torque xy	± 1550 Nm	± 3900 Nm
Torque z	± 390 Nm	± 1200 Nm

Requirements, foundation

The table shows the requirements for the foundation where the weight of the installed robot is included:

Requirement	Value	Note
Flatness of foundation surface	0.5 mm	Flat foundations give better repeatability of the resolver calibration compared to original settings on delivery from ABB.
		The value for levelness aims at the circumstance of the anchoring points in the robot base.
		In order to compensate for an uneven surface, the robot can be recalibrated during installation. If resolver/encoder calibration is changed this will influence the absolute accuracy.
Minimum resonance frequency	22 Hz Note	The value is recommended for optimal perform- ance. Due to foundation stiffness, consider robot mass including equipment. ⁱ
	It may affect the manipulator life- time to have a lower resonance frequency than recommended.	For information about compensating for founda- tion flexibility, see the application manual of the controller software, section <i>Motion Process</i> <i>Mode</i> .

The minimum resonance frequency given should be interpreted as the frequency of the robot mass/inertia, robot assumed stiff, when a foundation translational/torsional elasticity is added, i.e., the stiffness of the pedestal where the robot is mounted. The minimum resonance frequency should not be interpreted as the resonance frequency of the building, floor etc. For example, if the equivalent mass of the floor is very high, it will not affect robot movement, even if the frequency is well below the stated frequency. The robot should be mounted as rigid as possibly to the floor.
 Disturbances from other machinery will affect the robot and the tool accuracy. The robot has resonance frequencies in the region 10 – 20 Hz and disturbances in this region will be amplified, although somewhat damped by the servo control. This might be a problem, depending on the requirements from the applications. If this is a problem, the robot needs to be isolated from the environment.

Storage conditions, robot

The table shows the allowed storage conditions for the robot:

Parameter	Value
Minimum ambient temperature	-25° C
Maximum ambient temperature	+55° C
Maximum ambient temperature (less than 24 hrs)	+75° C
Maximum ambient humidity	95% at constant temperature (gaseous only)

19

1.3.2 Technical data *Continued*

Operating conditions, robot

The table shows the allowed operating conditions for the robot:

Parameter	Value
Minimum ambient temperature	+5°
Maximum ambient temperature	+45°
Maximum ambient humidity	95% at constant temperature (gaseous only)

Protection classes, robot

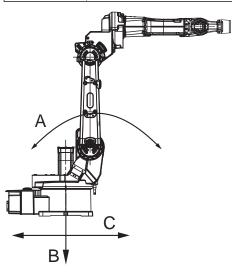
The table shows the available protection types of the robot, with the corresponding protection class.

Protection type	Protection class ⁱ
Manipulator, protection type Standard	IP40

i According to IEC 60529.

1.3.3 Mounting the manipulator

1.3.3 Mounting the manipulator

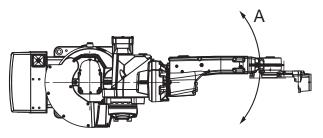

General

Maximum load in relation to the base coordination system. See Figure below. Floor Mounted

Force	Endurance load (in operation)	Max. load (emergency stop)
Force xy	± 1900 N	± 4300 N
Force z	1850 ±900 N	1850 ±2350 N
Torque xy	± 1550 Nm	± 3900 Nm
Torque z	± 390 Nm	± 1200 Nm

Suspended

Force	Endurance load (in operation)	Max. load (emergency stop)
Force xy	± 1900 N	± 4250 N
Force z	- 1850 ±750 N	-1850 ±2350 N
Torque xy	± 1550 Nm	± 3900 Nm
Torque z	± 390 Nm	± 1200 Nm



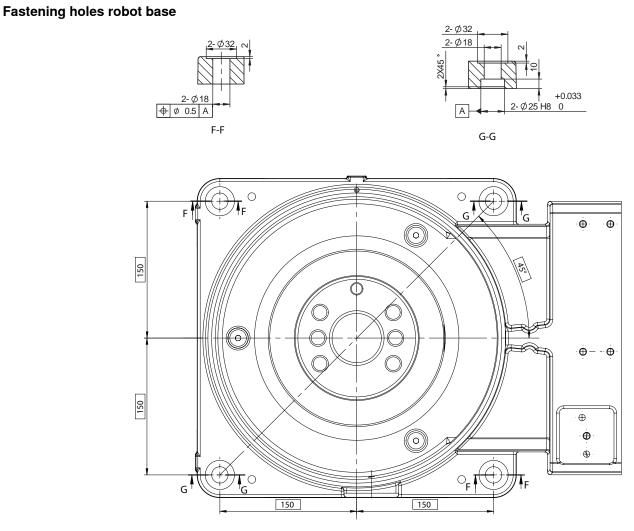
xx1100000296

Pos	Description
Α	Torque _{xy} (T _{xy})
В	Force _z (F _z)
С	Force _{xy} (F _{xy})

21

1.3.3 Mounting the manipulator *Continued*

xx1100000297


Pos	Description
Α	Torque _z (T _z)

Note regarding M_{xy} and F_{xy}

The bending torque (M_{xy}) can occur in any direction in the XY-plane of the base coordinate system.

The same applies to the transverse force (F_{xy}).

^{1.3.3} Mounting the manipulator Continued

xx1100000293

Attachment bolts, specification

The table below specifies required bolts and washers for securing the robot at installation site.

Specification	Description	
Attachment bolts, 4 pcs	M16 x 60 (installation directly on foundation) M16 x 70/80 (installation on foundation or base plate, using guiding sleeves)	
Washers, 4 pcs	17 x 30 x 3	
Quality	Quality 8.8	
Tightening torque	200 Nm	

1.4.1 Calibration methods

1.4 Calibration and reference

1.4.1 Calibration methods

Overview

This section specifies the different types of calibration and the calibration methods that are supplied by ABB.

The original calibration data delivered with the robot is generated when the robot is floor mounted. If the robot is not floor mounted, then the robot accuracy could be affected. The robot needs to be calibrated after it is mounted.

More information is available in the product manual.

Types of calibration

Type of calibration	Description	Calibration method
Standard calibration	The calibrated robot is positioned at calibration position.	Calibration Pendulum
	Standard calibration data is found on the SMB (serial measurement board) or EIB in the robot.	
Absolute accuracy calibration (option- al)	 Based on standard calibration, and besides positioning the robot at synchronization position, the Absolute accuracy calibration also compensates for: Mechanical tolerances in the robot structure 	CalibWare
	• Deflection due to load Absolute accuracy calibration focuses on pos- itioning accuracy in the Cartesian coordinate system for the robot.	
	Absolute accuracy calibration data is found on the serial measurement board (SMB) or other robot memory.	
	A robot calibrated with Absolute accuracy has a sticker next to the identification plate of the robot (IRC5).	
	To regain 100% Absolute accuracy perform- ance, the robot must be recalibrated for abso- lute accuracy after repair or maintenance that affects the mechanical structure.	
	ABSOLUTE ACCURACY	
	xx0400001197	
Optimization	Optimization of TCP reorientation perform- ance. The purpose is to improve reorientation accuracy for continuous processes like weld- ing and gluing.	Wrist Optimization
	Wrist optimization will update standard calibration data for axes 4 and 5.	

1.4.1 Calibration methods Continued

Brief description of calibration methods

Calibration Pendulum method

Calibration Pendulum is a standard calibration method for calibration of some ABB robots.

Two different routines are available for the Calibration Pendulum method:

- Calibration Pendulum II
- Reference calibration

The calibration equipment for Calibration Pendulum is delivered as a complete toolkit, including the *Operating manual - Calibration Pendulum*, which describes the method and the different routines further.

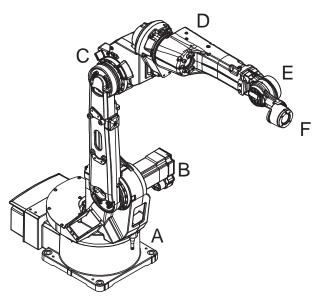
Wrist Optimization method

Wrist Optimization is a method for improving reorientation accuracy for continuous processes like welding and gluing and is a complement to the standard calibration method.

The actual instructions of how to perform the wrist optimization procedure is given on the FlexPendant.

CalibWare - Absolute Accuracy calibration

The CalibWare tool guides through the calibration process and calculates new compensation parameters. This is further detailed in the *Application manual - CalibWare Field*.


If a service operation is done to a robot with the option Absolute Accuracy, a new absolute accuracy calibration is required in order to establish full performance. For most cases after replacements that do not include taking apart the robot structure, standard calibration is sufficient.

1.4.2 Fine calibration

1.4.2 Fine calibration

General

Fine calibration is made using the Calibration Pendulum, see *Operating manual* - *Calibration Pendulum*.

xx1100000294

Pos	Description	Pos	Description
Α	Axis 1	В	Axis 2
С	Axis 3	D	Axis 4
E	Axis 5	F	Axis 6

Calibration

Calibration	Position
Calibration of all axes	All axes are in zero position
Calibration of axis 1 and 2	Axis 1 and 2 in zero position
	Axis 3 to 6 in any position
Calibration of axis 1	Axis 1 in zero position
	Axis 2 to 6 in any position

1.5 Robot load and diagrams

1.5.1 Introduction

Information

It is very important to always define correct actual load data and correct payload of the robot. Incorrect definitions of load data can result in overloading of the robot.

If incorrect load data is used, and/or if loads outside the load diagram are used, the following parts can be damaged due to overload:

- motors
- gearboxes
- mechanical structure

In RobotWare, the service routine LoadIdentify can be used to determine correct load parameters. The routine automatically defines the tool and the load.

See Operating manual - IRC5 with FlexPendant, for detailed information.

Robots running with incorrect load data and/or with loads outside the load diagram, will not be covered by robot warranty.

General

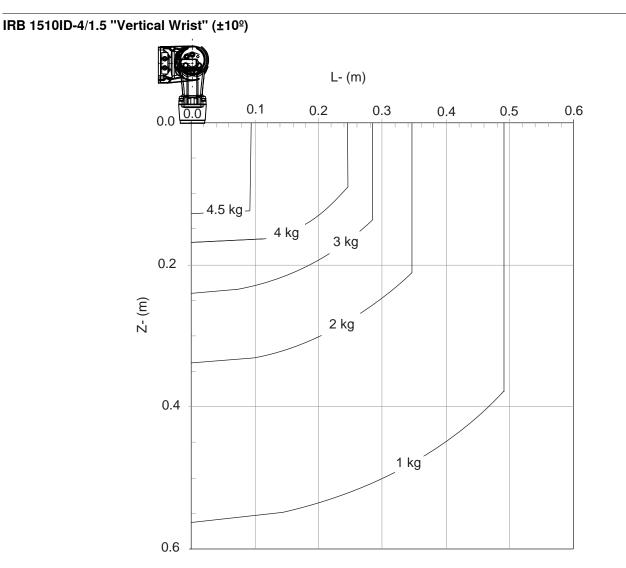
The load diagrams include a nominal pay load inertia, J_0 of 0.012 kgm², and an extra load of 10 kg (hose package included) at the upper arm housing. At different moment of inertia the load diagram will be changed. For robots that are allowed tilted, wall or inverted mounted, the load diagrams as given are valid and thus it is also possible to use RobotLoad within those tilt and axis limits.

Control of load case with RobotLoad

To verify a specific load case, use the RobotStudio add-in RobotLoad.

The result from RobotLoad is only valid within the maximum loads and tilt angles. There is no warning if the maximum permitted arm load is exceeded. For over-load cases and special applications, contact ABB for further analysis. 1.5.2 Load diagrams

1.5.2 Load diagrams


IRB 1510ID-4/1.5 0,50 1 kg 0,45 0,40 0,35 `1.5 kg 0,30 2 kg Z- (m) 0,25 0,20 2.5 kg ·3 kg ַ 0,15 3.5 kg 4 kg -0,10 0,05 0,00 0,05 0,20 0,10 0,15 0,25 0,30 200 0,00 L- (m)

xx1100000300

Extra load of 10 kg (hose package included) at the upper arm housing included in the load diagram.

0,35

1.5.2 Load diagrams Continued

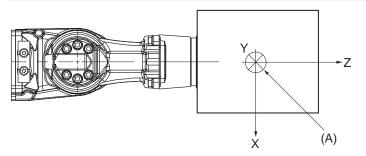
xx1100000471

Extra load of 10 kg (hose package included) at the upper arm housing included in the load diagram.

For wrist down (turning disk faced downwards) with $\pm 10^{\circ}$ deviation from vertical line.

	Description
Max load	4.5 kg
Z _{max}	0.128 m
L _{max}	0.093 m

1.5.3 Maximum load and moment of inertia for full and limited axis (center line down) movement

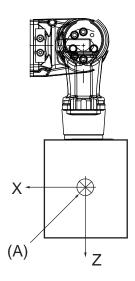

1.5.3 Maximum load and moment of inertia for full and limited axis (center line down) movement

General

Total load given as: Mass in kg, center of gravity (Z and L) in m and moment of inertia (J_{ox}, J_{oy}, J_{ox}) in kgm². L= sqr(X² + Y²), see Figure below.

Full movement of axis 5 (+135º to -135º)

Axis	Robot type	Max. value
5	IRB 1510ID-4/1.5	J5 = Mass x ((Z + 0.200 ² + L ²) + max (J _{ox} , J _{oy}) \leq 0.58 kgm ²
6	IRB 1510ID-4/1.5	J6= Mass x L ² + J _{0Z} \leq 0.24 kgm ²


xx1100000301

Pos	Description
A	Center of gravity
	Description
J _{ox} , J _{oy} , J _{0Z}	Max. moment of inertia around the X, Y and Z axes at center of gravity.

Limited axis 5, Center line down

Axis	Robot type	Max. value
5	IRB 1510ID-4/1.5	J5 = Mass x ((Z + 0.200 ² + L ²) + max (J _{ox} , J _{oy}) \leq 0.58 kgm ²
6	IRB 1510ID-4/1.5	J6= Mass x L^2 + J _{0Z} \le 0.24 kgm ²

1.5.3 Maximum load and moment of inertia for full and limited axis (center line down) movement *Continued*

xx1100000475

Pos	Description	
Α	Center of gravity	
	Description	
J _{ox} , J _{oy} , J _{0Z}	Max. moment of inertia around the X, Y and Z axes at center of gravity.	

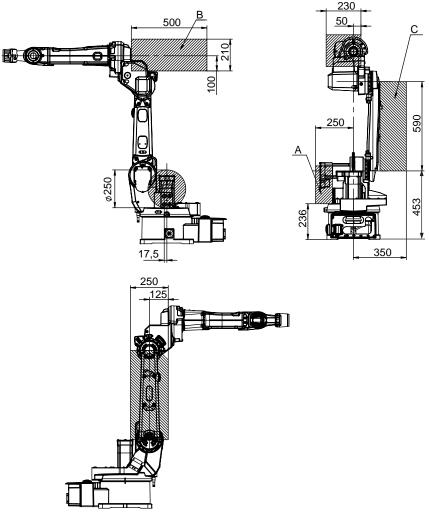
1.5.4 Wrist torque

1.5.4 Wrist torque

General

The table below shows the maximum permissible torque due to payload.

The wrist torque values are for reference only, and should not be used for calculating permitted load offset (position of center of gravity) within the load diagram, since those also are limited by main axes torques as well as dynamic loads. Furthermore, arm loads will influence the permitted load diagram. To find the absolute limits of the load diagram, use the RobotStudio add-in RobotLoad.


Robot type	•	Max wrist torque axis 6	Max torque valid at load
IRB 1510ID-4/1.5	12.2 Nm	3.9 Nm	4 kg

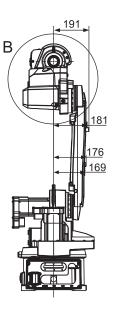
1.6 Mounting of equipment

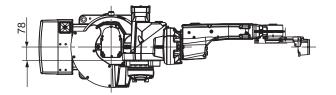
1.6 Mounting of equipment

Load areas

Extra loads can be mounted on the wrist, the upper arm housing, and on the frame. Load areas and permitted loads are shown in graphic below. The center of gravity of the extra load shall be within the marked load areas.

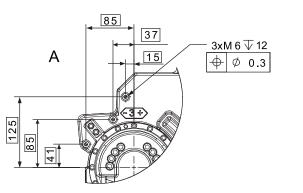

xx1100000299

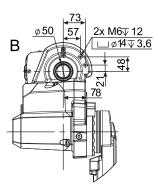

Load area Robot	Max. load				
	Α	В	С	B+C	
IRB 1510ID-4/1.5	20 kg	10 kg	15 kg	25 kg	

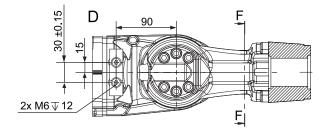

1.6 Mounting of equipment *Continued*

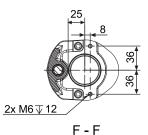
Holes for mounting of extra equipment

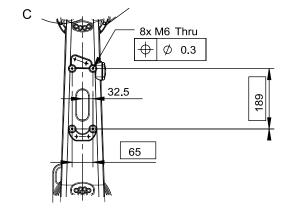
The robot has holes for mounting extra equipment.

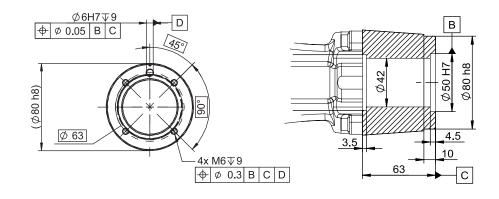







xx1100000302


1.6 Mounting of equipment *Continued*



xx1100000303

35

1.6 Mounting of equipment *Continued*

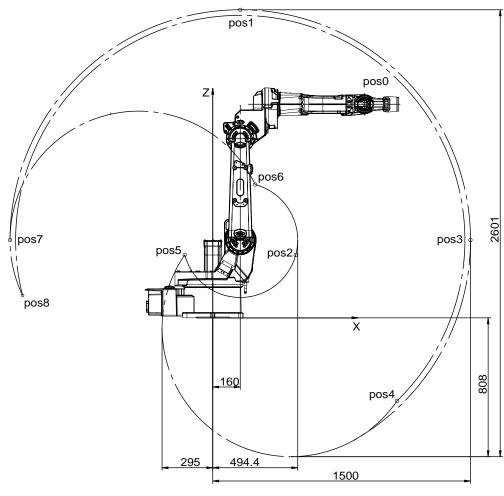
Robot tool flange

xx1100000305

Fastener quality

When fitting tools on the tool flange, only use screws with quality 12.9. For other equipment use suitable screws and tightening torque for your application.

1.7 Robot motion


1.7.1 Introduction

IRB 1510ID-4/1.5

Axis	Type of motion	Range of movement
1	Rotation motion	+170° to -170°
2	Arm motion	+150° to -90°
3	Arm motion	+80° to -100°
4	Rotation motion	+155° to -155°
5	Bend motion	+135° to -135°
6	Turn motion	+200° to -200°

Positions at wrist center IRB 1510ID-4/1.5

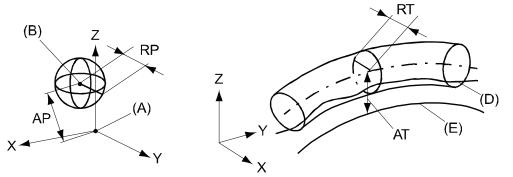
Working range with extra mechanical stop on axis 3.

xx1100000306

1 Description

1.7.1 Introduction *Continued*

Pos No. see Figure above	X Position (mm)	Z Position (mm)	Axis 2 Angle (de- grees)	Axis 3 Angle (de- grees)
Pos 0	883	1243	0	0
Pos 1	160	1793	0	-74,5
Pos 2	483	365	0	+80
Pos 3	1500	453	+90	-74,5
Pos 4	1073	-483	+150	-100
Pos 5	-163	367	+150	+80
Pos 6	247	776	-90	+80
Pos 7	-1180	453	-90	-74,5
Pos 8	-1107	130	-90	-100


1.7.2 Performance according to ISO 9283

1.7.2 Performance according to ISO 9283

General

At rated maximum load, maximum offset and 1.6 m/s velocity on the inclined ISO test plane, with all six axes in motion. Values in the table below are the average result of measurements on a small number of robots. The result may differ depending on where in the working range the robot is positioning, velocity, arm configuration, from which direction the position is approached, the load direction of the arm system. Backlashes in gearboxes also affect the result.

The figures for AP, RP, AT and RT are measured according to figure below.

xx0800000424

Pos	Description	Pos	Description
Α	Programmed position	E	Programmed path
В	Mean position at program execution	D	Actual path at program execution
AP	Mean distance from pro- grammed position	AT	Max deviation from E to average path
RP	Tolerance of position B at re- peated positioning	RT	Tolerance of the path at repeated program execution

Description	IRB 1510ID-4/1.5
Pose repeatability, RP (mm)	0.05
Pose accuracy, AP ⁱ (mm)	0.05
Linear path repeatability, RT (mm)	0.35
Linear path accuracy, AT (mm)	1.3
Pose stabilization time, (PSt) to within 0.2 mm of the position (s)	0.1

ⁱ AP according to the ISO test above, is the difference between the teached position (position manually modified in the cell) and the average position obtained during program execution.

The above values are the range of average test results from a number of robots.

1.7.3 Velocity

1.7.3 Velocity

3-phase power supply

Axis No.	IRB 1510ID-4/1.5	
1	130°/s	
2	140°/s	
3	140°/s	
4	320°/s	
5	380°/s	
6	460°/s	

1-phase power supply

When the robot uses a single phase power supply, like with Compact controller, the performance regarding max axis speed is reduced, see table below. The reduced top speed can be increased if the power supply minimum voltage is higher than the default setting 187 V (220x0.85). See, "Mains tolerance min", in the Technical reference manual - System Parameters "How to optimize drive system parameters".

Note that the robot acceleration is not affected by the single phase power supply. Thus the cycle time may not be affected at all. To test the cycle RobotStudio can be used. The RobotStudio also allows modification of "Mains tolerance min".

Axis No.	IRB 1510ID-4/1.5
1	130°/s
2	117°/s
3	109°/s
4	320°/s
5	341°/s
6	460°/s

1.7.4 Robot stopping distances and times

1.7.4 Robot stopping distances and times

Introduction

The stopping distances and times for category 0 and category 1 stops, as required by EN ISO 10218-1 Annex B, are listed in *Product specification - Robot stopping distances according to ISO 10218-1 (3HAC048645-001)*.

1 Description

1.8 Customer connections

1.8 Customer connections

No customer/application connections available for IRB 1510ID-4/1.5.

1.9 Maintenance and troubleshooting

General The robot requires only a minimum maintenance during operation. It is designed to make it as easy to service as possible: Maintenance free AC motors are used. • • Oil and grease are used for the gear boxes. · The cabling is routed for longevity, and in the unlikely event of a failure, its modular design makes it easy to change. It has a progam memory "battery low" alarm. ٠ Maintenance The maintenance intervals depend on the use of the robot, the required maintenance

activities also depends on selected options. For detailed information on maintenance procedures, see Product Manual - IRB 1510.

This page is intentionally left blank

2.1 Introduction to variants and options

2 Specification of variants and options

2.1 Introduction to variants and options

General

The different variants and options for the IRB 1510 are described in the following sections. The same option numbers are used here as in the specification form. The variants and options related to the robot controller are described in the product specification for the controller.

2.2 Manipulator

2.2 Manipulator

Variants			
	Option	IRB Type	Handling capacity (kg)/Reach (m)
	435-149	1510ID	4/1.5

Protection

Option	Name	Description
287-4	Standard	IP 40

Mounting position

(Option	Name	Description
2	224-2	Inverted mount- ing	For inverted mounting of the manipulator.

Manipulators delivered for floor mounting must have the option added before changing mounting position to inverted.

Resolver connection, axis 7

A connection for resolver signals axis 7 located on the base.

xx1100000304

Pos	Description
А	Resolver connection on base, option 864-1.

Application interface connection type

Option	Name	Description
17-7	No application inter- face	

2.2 Manipulator Continued

Electronic Position Switches (EPS)

Electronic Position Switches (EPS) is an additional safety computer in the controller, with the purpose of providing safe output signals representing the position of robot axes. The output signals are typically connected to cell safety circuitry and/or a safety PLC which takes care of interlocking the robot cell, for example in order to prevent robot and operator to enter a common area simultaneously. See *Application manual - Electronic Position Switches*.

2.3 Floor cables

2.3 Floor cables

Manipulator cable length

Option	Lengths
210-2	7 m
210-3	15 m

2.4 Process

2.4.1 Process

Process module

Option	Туре	Description
768-1	Empty cabinet small	See Product specification - Controller IRC5 with FlexPend- ant, see chapter 2.2.1

Installation kit

Option	Туре	Description
715-1	Installation kit	See Product specification - Controller IRC5 with FlexPend- ant, chapter 2.2.1

WeldGuide IV

Weldguide IV provides tracking functionality by reading the true impedance values close to the arc at 25 kHz then guides the robot to the correct path. Weldguide IV is designed to track difficult welding joint variations resulting from cast components or other pre-process problems.

Option	Туре	Description
992-1	Basic	Occupies one slot and one Ethernet port.
		Digital I/O or AD Combi I/O is needed for WeldGuide functions.
		Requires options WG Sensor [994-1] or [995-1], and WeldGuide Multipass [815-2].
		Not together with option UL/CSA [429-1].
992-2	Advanced	Includes all <i>Basic</i> functionality and adaptive fill. This feature allows the robot to adjust to the changes in joint width, the weave stroke will increase or decrease, and the travel speed will be adjusted accordingly.
		Occupies one slot and one Ethernet port.
		Digital I/O or AD Combi I/O is needed for WeldGuide functions.
		Requires options WG Sensor [994-1] or [995-1], and WeldGuide Multipass [815-2].
		Not together with option UL/CSA [429-1].

2.4.2 Process equipment

2.4.2 Process equipment

Torch service

Option	Туре	Description
1037-1	ABB TSC 2013	ABB Torch Service Center. Including: Cleaner, cutter and BullsEye. Occupies I/O signals Dig. 5In/2Out. Requires option Base Dig. 16in/16Out [1541-1].
1037-5	BullsEye	BullsEye stand alone. Requires options RW Arc [633-4], and BullsEye [652-1] or RW Cutting [951-1].

2.5 User documentation

2.5 User documentation

User documentation

The user documentation describes the robot in detail, including service and safety instructions.

All documents can be found via myABB Business Portal, www.abb.com/myABB.

2.6 Warranty

2.6 Warranty

Warranty

For the selected period of time, ABB will provide spare parts and labor to repair or replace the non-conforming portion of the equipment without additional charges. During that period, it is required to have a yearly *Preventative Maintenance* according to ABB manuals to be performed by ABB. If due to customer restrains no data can be analyzed with ABB Connected Services for robots with OmniCore controllers, and ABB has to travel to site, travel expenses are not covered. The *Extended Warranty* period always starts on the day of warranty expiration. Warranty Conditions apply as defined in the *Terms & Conditions*.

This description above is not applicable for option Stock warranty [438-8]

Option	Туре	Description
438-1	Standard warranty	Standard warranty is 12 months from <i>Customer Delivery Date</i> or latest 18 months after <i>Factory Shipment Date</i> , whichever occurs first. Warranty terms and conditions apply.
438-2	Standard warranty + 12 months	Standard warranty extended with 12 months from end date of the standard warranty. Warranty terms and conditions apply. Contact Customer Service in case of other requirements.
438-4	Standard warranty + 18 months	Standard warranty extended with 18 months from end date of the standard warranty. Warranty terms and conditions apply. Contact Customer Service in case of other requirements.
438-5	Standard warranty + 24 months	Standard warranty extended with 24 months from end date of the standard warranty. Warranty terms and conditions apply. Contact Customer Service in case of other requirements.
438-6	Standard warranty + 6 months	Standard warranty extended with 6 months from end date of the standard warranty. Warranty terms and conditions apply.
438-7	Standard warranty + 30 months	Standard warranty extended with 30 months from end date of the standard warranty. Warranty terms and conditions apply.
438-8	Stock warranty	Maximum 6 months postponed start of standard war- ranty, starting from factory shipment date. Note that no claims will be accepted for warranties that occurred be- fore the end of stock warranty. Standard warranty com- mences automatically after 6 months from <i>Factory</i> <i>Shipment Date</i> or from activation date of standard war- ranty in WebConfig.
		Note
		Special conditions are applicable, see <i>Robotics Warranty Directives</i> .

3 Accessories

General

There is a range of tools and equipment available, especially designed for the manipulator.

Basic software and software options for robot and PC For more information, see *Product specification - Controller IRC5*.

Robot peripherals

Motor Units

This page is intentionally left blank

Index

Absolute Accuracy, calibration, 25 ambient humidity operation, 20 storage, 19 ambient temperature operation, 20 storage, 19 С

cables, 48 calibration Absolute Accuracy type, 24 standard type, 24 calibration, Absolute Accuracy, 25 Calibration Pendulum, 26 CalibWare, 24 category 0 stop, 41 category 1 stop, 41 connections, 42

D

dimensions, 13 documentation, 51

Ε EPS, 16

F

fastening holes, 23 fine calibration, 26 foundation requirements, 19

н

handling capacity, 11 humidity operation, 20 storage, 19

instructions, 51

L

load areas, 33 load diagrams, 28 loads on foundation, 18

Μ

maintenance, 43 manuals, 51 motion, 37

mounting, 11, 21 equipment, 33

Ν

noise level, 11

0 operating conditions, 20 options, 45

Ρ

product standards, 14 protection classes, 20 protection type, 20

R

reach, 11 requirements on foundation, 19 robot protection class, 20 protection types, 20 robot variants, 11

S

safety standards, 14 service instructions, 51 standards, 14 EN IEC, 14 EN ISO, 14 standard warranty, 52 stock warranty, 52 stopping distances, 41 stopping times, 41 storage conditions, 19

т

temperatures operation, 20 storage, 19 tool flange, 36 torques on foundation, 18

U user documentation, 51

variants, 11, 45-46 velocity, 40

w

warranty, 52 weight, 11, 17 working range, 16 wrist torque, 32

ABB AB Robotics & Discrete Automation S-721 68 VÄSTERÅS, Sweden Telephone +46 10-732 50 00

ABB AS

Robotics & Discrete Automation Nordlysvegen 7, N-4340 BRYNE, Norway Box 265, N-4349 BRYNE, Norway Telephone: +47 22 87 2000

ABB Engineering (Shanghai) Ltd.

Robotics & Discrete Automation No. 4528 Kangxin Highway PuDong New District SHANGHAI 201319, China Telephone: +86 21 6105 6666

ABB Inc.

Robotics & Discrete Automation 1250 Brown Road Auburn Hills, MI 48326 USA Telephone: +1 248 391 9000

abb.com/robotics